GROUND OVER CURRENT RELAY (EARTH FAULT RELAY)[50/51N] (E

DCG-M22D

Feature

The OCGR is a microprocessor based digital type protective relay that has ground overcurrent detecting elements. For protecting coordination, it could be applied with:

1. Instant. GOC with one of normal inverse, very inverse, and extremely inverse curves or

2. Alone with definite time.

Since a fault level is treated by A/D converter and calculated by CPU, the fault detected, is more correct and precise than E/M type or static type.

Application

The OCGR is applied to solid ground or resistance ground network. More-over the relay could be chosen at the begining of design stage, since its adjustable range is wider than other relays.

Front plate

Specifications

■ MODEL

DCG-M22D(Draw out)

Rating

Rated current Frequency Auxiliary Voltage Ambient temperature

AC 5A 60/50Hz±5% AC/DC 110V(86~260V) -10°C to 60°C(with no icing)

0.2~2A Lock(Steps of 0.05A) 1~40A(Steps of 0.5A)

Current setting

Overcurrent range Instantaneous range

■ Time setting & curve IEC 255

Overcurrent time lever Instantaneous	0.25~40(Steps of 0.25) Less than 40ms(over 200%)
 Normal inverse time 	$N = \frac{0.14}{1^{0.02} - 1} \cdot \frac{tp}{10}$
· Very inverse time	$V = \frac{13.5}{1-1} \cdot \frac{tp}{10}$
· Extremely inverse time	EI= $\frac{80}{1^2-1} \cdot \frac{10}{10}$
· Definite time	DE= 2 $\cdot \frac{\text{tp}}{10}$
Resetting Value Reset time	> 95% ⟨ 100ms

Burden

Overcurrent Aux Voltage

■Contact

Output Relay	Trip 1c, Alarm 1a
Trip & Alam contact capacity	
Make	AC 240V 10A(L/R=0ms)
	DC 1000W 0.5Sec(L/R=0ms)
Break	AC 240V 3A(L/R=0ms)
	DC 30W 0.5Sec(L/R=0ms)

LED(Red) LED(Gre)

0.5VA

12VA(AC),6W(DC)

Indicator

Operating start	
Operating	

Operating time Over Current

Normal inverse time	200% 6.2 222
Normal inverse lime	300% 0.3 Sec
	700% 3.5 sec
Very inverse time	300% 6.75 sec
	700% 2 <u>.</u> 25 sec
Extremely inverse time	300% 10 sec
	700% 1 <u>.</u> 67 sec
Instantaneous time	less then 0.04 sec
	(200% overcurrent)
Degree Protection	IP52
Thermal Withstand Capability	r for 1s 80xIn Continuously 3xIn
Vibration registence	
Malfunction	10Hz5mm double amplitude 30s
	each in X and Y directions 6.7Hz
	2.5mm double amplitude 600s
	each in X,Y, and Z directions
Shock resistance	
Doctruction:	200% (approx 20C) 2 time each
	In 3 directions

Lever #10

■Insulation to IEC 255 Dielectric withstand

Insulation resistance at Impluse Voltage Withstand Surge transient simulator Weight

2kV for 1 minute between all terminals and case earth 500V > 100MΩ 5kV-1.2/50 μs 2.5kV 1MHz/200 2.0kg

GROUND OVER CURRENT RELAY (EARTH FAULT RELAY)[50/51N] (E

Operating time curves

Normal Inverse

Extermely Inverse

Calculation

As a mode that neutral point grounds by means of conductor

directly, one wire earthing current is equal to short current. So earth current is the largest one comparing with other grounding method. In case of earth fault time, the electric potential is very small. Accordingly, this can decrease insulation intensity level of transformer and power line, also be economical. But inductive disturbance is very serious problem. Therefore high speed circuit breaking should be instantly taken. Also this method is adapted in measurement of high voltage because of high reliability.

Example 6,600V Neutral NGR 38Q Resistance

$$lg = \frac{3Ea}{Zo} \quad Ea = \frac{6,600}{\sqrt{3}}$$

 $Zo = 3RN = 3 \times 38$

(3 RN is accountable for 1 line zero phase, and to RN flowes 3 lines zero phases.)

∴lg=
$$\frac{3Ea}{Zo}$$
 Ea = $\frac{3X6,600/\sqrt{-3}}{3X38}$ = 100A

Ig = ground fault current

Block diagram

GROUND OVER CURRENT RELAY (EARTH FAULT RELAY)[50/51N] (E

Wiring

Terminal arrangement

Draw out

Demension

Digital type draw out Case : ABS(Non flamable) Color : Black(N1.5)

Cutting Size: 165 X 122mm

